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Abstract: A weighted-residual based a posteriori error estimation formulation in Galerkin’s
finite element fashion using quadratic Lagrange polynomials has been formulated to find
numerical solutions of obstacle, unilateral and contact second-order boundary-value prob-
lems. The approach having piecewise quadratic shape functions has been utilized for
checking the approximate solutions for spatially adaptive finite element grids. The local
element balance based on the residual has been considered as an error assessment crite-
rion. Numerical testing indicates that local errors are large at the interface regions where
the gradients are large. A comparison of an adaptive refined grid with that of a uniform
mesh for second order obstacle boundary value problems, confirms the superiority of the
adaptive scheme without increasing the number of unknown coefficients.
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1 Introduction

Appropriate grid construction is a key characteristic of any formulation intended for solving differ-
ential equations using finite element methods (FEM). It is observed in most situations that, once a
grid has been generated, it is kept fixed all the way through the enduring computations. This may
cause an increase in local errors in the solution domain where the element size “h” is not sufficient
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to model a rapidly changing solution correctly. The adaptive grid generation technique helps in
creating a large number of grid nodes in the regions where the solution is sharply changing; it can
lessen the local errors and also a small grid density in domains where the solution is either constant
or slowly varying, can facilitate a more efficient use of resources.
In almost all adaptive grid generation schemes, the local error assessment criterion is the key
concern. Simple post processing error estimators have been used by Zienkiewicz and Zhu [1, 2]
based on the approaches proposed by Oden [3] and Hinton [4]. An adaptive scheme based on a
posteriori error estimation was employed by Mirza et al [5], has also been employed in our present
investigations for the obstacle problem considered. Since this scheme depends on the governing
differential equations of the specific physical phenomenon, therefore, it is more precise and vigorous
than the other schemes presented by Babuska et al [6, 7], and Carey [8].
In this article, an adaptive technique based on a posteriori error estimation has been utilized to
solve boundary value problems using weighted residual formulations. Quadratic shape functions
are used for obtaining smooth approximations to the solution of a system of second-order boundary-
value problems [9, 10, 11, 12, 13] of the following type:

y′′ =

 f(x) a ≤ x < c,
g(x)y(x) + f(x) + r, c ≤ x < d,
f(x), d ≤ x ≤ b.

(1)

with boundary conditions,
y(a) = α1 and y(b) = α2 (2)

where f(x) is a given force on the string and the continuity conditions of y and y′ at c and d. Here,
f and g are continuous functions on [a, b] and [c, d] respectively. The parameters α1, α2, and r,
are real finite constants. Such types of systems arise in the study of obstacle, unilateral, moving
and free boundary value problems [9, 10, 11, 12, 13] describing the equilibrium relationship of an
obstacle string pulled at the ends and lying over an elastic step. The following system of differential
equations is obtained for the same equilibrium configuration of an obstacle string pulled at the
ends and lying over an elastic step:

y′′ =

{
f(x) 0 ≤ x < π/4 and 3π/4 ≤ x ≤ π,
y + f(x)− 1, π/4 ≤ x < 3π/4,

(3)

with boundary conditions,
y(0) = y(π) = 0, (4)

Here x is the independent variable, y(x) is the unknown function (state variable). We will call f(x)
an interior load (since it represents load applied to the interior (i.e., the domain)) of the system.
The domain is any finite or infinite interval along the x-axis. The word ‘load’ is to mean any agent
or driving force that causes the state of the system to change, for example, a force, displacement,
voltage or temperature etc. In general it is not possible to obtain the analytical solution of (1) for
arbitrary choices of f(x) and g(x), thus, usually numerical methods are employed for obtaining an
approximate solution of (1).
One of the main advantages of the adaptive technique is the attainment of higher accuracy. Once
the solution has been computed, the information required for FEM interpolation between mesh
points is available. This is particularly important when the solution of the boundary-value problem
is required at different locations in the interval [a, b].
The layout of the paper follows with section 2, where an adaptive finite element formulation is
presented using quadratic Lagrange polynomial. Computational aspects are given in section 3 and
the comparison of the uniform grid solutions and adaptive grid solutions are discussed in section
4.
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2 An Adaptive Finite Element Formulation

The finite element method provides an elegant and systematic technique for constructing basis
functions for Galerkin’s approximations of boundary value problems; a brief reflection reveals that
the idea also provides a basis for methods of interpolation. The method leads to the Lagrange
families of finite elements.
in this formulation C0-quadratic elements are used and require three nodes to uniquely define a
quadratic polynomial. One node must be located on the element boundary, in order to simplify
assembly and to make sure that the resulting assembled trial functions are local. The third node
may be located anywhere in the interior. The middle node plays no role in establishing inter-
element continuity; its only purpose is to help in defining a quadratic polynomial. We prefer to
recast the quadratic trial function in terms of values of the dependent functions at nodes i, j&k
(the convention used by [5, 14-17]) thus

ỹ(x) = N1yi +N2yj +N3yk ≡ [N ] {ỹ} (5)

Here {ỹ}T =
[
yi yj yk

]
is the vector of nodal coordinates and [N ] =

[
N1 N2 N3

]
is called

the vector of interpolation, shape, or basis functions, where N1 = (x−xj) (x−xk) / (xi−xj) (xi−
xk), N2 = (x− xi) (x− xk) / (xj − xi) (xj − xk), and N3 = (x− xi) (x− xj) / (xk − xi) (xk − xj).
Now, the governing differential equation is of the form (see equation (3)):

y′′ − αy − f(x) + β = 0 (6)

where
α = β = 0, for 0 ≤ x < π/4 and 3π/4 ≤ x ≤ π,
α = β = 1, for π/4 ≤ x < 3π/4,

(7)

Galerkin’s finite element formulation as given in [14, 15, 16, 17], is used for our particular problem
and after substituting the trial functions, the equation (6) can be written in discretized form as

wỹ′|X2

X1
−

n∑
e=1

(∫
Xe

w′ỹ′dx+ α

∫
Xe

wỹdx+

∫
Xe

wf(x)dx− β

∫
Xe

wdx

)
= 0 (8)

where ′e′ represents the element and ′n′ represents the total number of elements in the discretized
region. Now, when the element equations are assembled according to equation (8). The equations
for the elements must combine in such a manner that only the boundary terms for the element
nodes on the boundary will contribute; all other terms for the interior nodes will be zero. This
implies that the boundary terms for the elements at common interior nodes cancel each other. In
this particular problem (3), the contribution of the boundary terms will also vanish due to y(0) = 0
and y(π) = 0. Also, f(x) = 0 for the given system of second-order differential equations in the
example. Therefore, in matrix notation the system of equations (8) can be written as

n∑
e=1

(k1ỹ + αk2ỹ − βf1) = 0 (9)

where k1 = 1
3L

 7 −8 1
−8 16 −8
1 −8 7

 , k2 = L
30

 4 2 −1
2 16 2
−1 2 4

 , and f1 = L
6

 1
4
1

 . Note that k1

and k2 are stiffness matrices, whilst f1 is a force vector. L = xk − xj or L = xj − xi is the length
between two adjacent nodes. Using the conditions given in (7), we can write (9) for one element
as

k1ỹ = 0, for 0 ≤ x < π/4 and 3π/4 ≤ x ≤ π,
k1ỹ + αk2ỹ − βf1 = 0, for π/4 ≤ x < 3π/4,

(10)
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Then applying the assembly procedure given in [14-17] for ′n′ elements and using the conditions
of equation (10), we will get global system of equations

K1ỹ = F1 (11)

where K1 is a global stiffness matrix and F1 is global force vector.

2.1 Residual Based a posteriori Error Estimation for Adaptive Grid Refinement
Approaches

The adaptive grid refinement stratagem progressively refines the grid in appropriate regions of the
solution domain. The vital part of such an approach is an error assessment criterion for checking
the quality of the approximate solution for various finite element grids. An a posteriori error
assessment criterion, which generates error estimates during the course of finding an approximate
solution and adaptively changes the grid is used [1-5].

2.2 A Residual Based a posteriori Scheme

A local error evaluation system which is based on the estimation of local residuals of the differential
equation is presented. A local element balance equation can be obtained from equation (8) of the
obstacle problem over the length of an element, i.e.,∫ Xe

2

Xe
1

w/ỹ/dx+ α

∫ Xe
2

Xe
1

wỹdx+

∫ Xe
2

Xe
1

wf(x)dx− β

∫ Xe
2

Xe
1

wdx ≈ 0 = ℜe (12)

A global particle balance over the whole system demands the condition

n∑
e=1

(∫
Xe

w/ỹ/dx+ α

∫
Xe

wỹdx+

∫
Xe

wf(x)dx− β

∫
Xe

wdx

)
≈ 0 = ℜ, (13)

where the summation is over all the elements of the system.
In obstacle problems, the conditions are given by (12) and (13) and can be used as assessment
criterion for checking the closeness of the approximate solution to the exact solution. In case of
an approximate solution, these conditions lead to a non-zero residual. However, the element-wise
condition can be employed as an assessment criterion for dividing elements into elements of smaller
size. In general, for an approximate solution

k1ỹ + αk2ỹ − βf1 ≈ 0 = ℜ. (14)

Using this local residual as an assessment criterion, an algorithm can be developed which locates
elements where residuals are large, locally refines the grid and computes the solution on the newly
generated grid. This algorithm can be repeated until a specified stopping measure is met. While
dividing an element into sub-elements, the number of subdivisions can be made proportional to
the relative magnitude of the local residual. This helps us in distributing the residual uniformly
over the entire domain.

3 Computational Aspects and Implementation

A computer code has been developed to solve obstacle, unilateral and contact second-order boundary-
value problems using an adaptive finite element scheme. The program has a core module which
employs quadratic Lagrange polynomials as basis functions for finite element formulation. This
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core module follows the general steps of a finite element solution strategy to find an approximate
solution. The core module is called by the adaptive grid generator to determine local residuals and
explore the possibility of grid refinements in appropriate regions of the problem. The error esti-
mation scheme established in the previous section has been implemented in the outer grid refining
iteration module. The working of this grid refining iteration module is described in the algorithm
in the section that follows.

3.1 Grid Refining Iteration Algorithm

Step 1: Read the input parameters for the obstacle problem.
Step 2: Set maximum number of iterations MaxIterations, minimum local residual εlocal.
Step 3: For the given grid, determine the solution at the nodes.
Step 4: Compute the residual for each of the element ℜe by using the solution obtained from step
3. Also calculate the global residual ℜ and standard deviation σℜ of the element residuals.
Step 5: Check for the stopping criteria for the adaptive scheme chosen in step 2.
Step 6: Iterate over all the elements starting from element e = 1,
If ℜe > σℜ then

Split the element into sub-elements.
Update the nodal-coordinate and element-connectivity tables.

end if
Step 7: Repeat steps 3 to 6.
The above algorithm works repeatedly, until either a convergence is reached or the maximum
number of iterations is met.

4 Numerical Results and Discussions

We consider the system of differential equation (3), when f(x) = 0, i.e.,

y′′ =

{
0, for 0 ≤ x < π/4 and 3π/4 ≤ x ≤ π,
y − 1, for π/4 ≤ x < 3π/4,

(15)

with boundary conditions (4). The analytical solution for the above mentioned example is given
as [9, 10, 14]

y(x) =

 4x/γ1, for 0 ≤ x < π/4,
1− 4 cosh(π/2− x)/γ2, for π/4 ≤ x < 3π/4,
4(π − x)/γ1 , for 3π/4 ≤ x ≤ π,

(16)

where γ1 = π + 4 coth(π/4) and γ2 = π sinh(π/4) + 4 cosh(π/4).
A grid refining iteration algorithm is applied on the mentioned obstacle problem. Figure 1 shows
a gradual reduction in the local residuals as the solution procedure gradually adapts according to
the approximation solution.
It is shown in Figures 1(a)-1(d), as the algorithm proceeds, more grid points are generated in
regions where the solution is changing rapidly and the local residual errors are large. Local residual
errors corresponding to the approximate solutions are shown in Figures 1(e)-1(h). The algorithm
automatically identifies those elements where grid refinement is required. The adaptive procedure
in turn results in the reduction of local errors from values ranging from [0, 0.4] to [0, 10.7].

After obtaining a refined grid, the core module was used to find the solution using both a
uniform and refined grid. The same number of grid points is used in the uniform grid as that
obtained for the adaptively refined grid. A comparison of the two solutions along with local
residuals is shown in Figure 2. It can be seen that the uniform and adaptive approximate solutions
are similar (see Figures 2(a) and 2(b)).
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Figure 1: Adaptive FEM solutions (using quadratic Lagrange polynomials) and element wise local
residuals for coarse meshing to fine meshing.

In case of a uniform grid solution, the local residual error (Figs. 2(c)) is large (in the range [0,
0.5]), while the local residual error is very small in case of the adaptively generated grid (in the
range [0, 10.7]). A comparison of the two errors is also shown in Figures 3(a)-3(c) with increasing
number of elements. It is shown that in the case of a uniform grid solution, the local error is large,
while it is very small in the case of the adaptively generated grid.

5 Conclusions

In this paper an adaptive grid refinement approach for the finite element solution of obstacle,
unilateral and contact second-order boundary-value problems has been presented. In order to
examine the adaptive grid refinement approach, a computer code has been developed using a
posteriori error assessment criteria. A noticeable reduction in the local errors is observed using
the adaptive grid refinement approach which resulted in obtaining more accurate solutions in
comparison with the uniform grids. The improvement in accuracy is attributed to the repositioning
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Figure 2: Uniform grid solution and adaptive grid solution and comparison of element wise local
residuals (20 quadratic elements).

of the grid nodes. It is not due to simply an increase in the number of nodes. The adaptive grid
refinement scheme automatically repositions the nodes in regions where the local errors are large.
A comparison between the adaptive and uniform grid approaches, based on progressively increasing
the number of elements indicates fast convergence of the adaptive grid refinement technique.
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Figure 3: Absolute errors for uniform meshing and adaptive meshing with 
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Figure 3: Absolute errors for uniform meshing and adaptive meshing with increasing number of
elements (a) 20 elements (b) 36 elements (c) 68 elements.
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